Synthesis and Structure of the Ternary Vanadate $NaMn_4(VO_4)_3$

Hamdi Ben Yahia^{a,b}, Etienne Gaudin^b, Ute Ch. Rodewald^a, and Rainer Pöttgen^a

^a Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany

b ICMCB, CNRS, Université Bordeaux 1,
 87 Avenue du Docteur Schweitzer, 33608 Pessac Cedex,
 France

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. **2011**, *66b*, 437 – 440; received February 2, 2011

The vanadate NaMn₄(VO₄)₃ was obtained as darkbrown crystals as a side-product during the crystallization of the oxygen-deficient perovskite Na₃MnV₂O_{7.5} in an NaCl/KCl flux. NaMn₄(VO₄)₃ crystallizes with the tetragonal (Mg_{1/2} $\square_{1/2}$)Mg₄(AsO₄)₃ type, space group *I*42*d*. The structure was refined from single-crystal diffractometer data: a = 7.0238(2), c = 19.8360(9) Å, R(F) = 0.013, $wR(F^2) = 0.033$, 853 F^2 values, and 49 variables. The NaMn₄(VO₄)₃ structure is built up of different sheets stacked perpendicular to the c axis. Na, Mn and V atoms are located in dodecahedra, octahedra and tetrahedra, respectively.

Key words: Vanadates, Crystal Structure, MnO-V₂O₅-Na₂O Ternary System

Introduction

Many different structures have been observed for orthovanadates with the general composition $AB_4(VO_4)_3$ (A = Li, Na, K, and Rb, and B = Ca, Mg, and Cd). In the ACd₄(VO₄)₃ series, three different structure types are observed. The structure of $LiCd_4(VO_4)_3$ [1] is a modulated variant of the Na₂CrO₄ type [2], NaCd₄(VO₄)₃ crystallizes with the maricite structure [3], and compounds $ACd_4(VO_4)_3$ (A = K [4] and Rb [5]) adopt the scheelite structure. With increasing size of the A cation, its coordination number increases from 4 to 6 with associated structural changes. Moreover, disorder is often observed between the A and B cations. In the incommensurate structure of $LiCd_4(VO_4)_3$, or $(\text{Li}_{1/3}\text{Cd}_{1/3}\square_{1/3})\text{CdVO}_4$, the Li/Cd disorder induces strong steric strains in the tetrahedral sites and a strong modulation of their occupancies [1, 6]. In NaCd₄(VO₄)₃, or $(Na_{1/3}Cd_{1/3}\square_{1/3})CdVO_4$, an Na/Ca/vacancy disorder is observed in strongly distorted tetrahedral sites derived from an octahedral site [7]. In $KCd_4(VO_4)_3$ [4] and $RbCd_4(VO_4)_3$ [5], all sites are fully occupied, but slight Cd/alkali mixing is observed for some of these sites. For the ACa₄(VO₄)₃ series, only NaCa₄(VO₄)₃ has been reported [8], but without detailed structural data. Its structure has been recently determined [9] and was found to be isostructural with the mineral silicocarnotite, $Ca_5(PO_4)_2SiO_4$ [10]. The $NaCa_4(VO_4)_3$ structure is very similar to that of Ca₃Y₂(SiO₄)₃ [11] and NaCd₄(PO₄)₃ [12], with a silicocarnotite type. In the $AMg_4(VO_4)_3$ series, only $LiMg_4(VO_4)_3$ [13] and NaMg₄(VO₄)₃ [14] have been observed, and both crystallize with the same structure, different from that of the Cd analogs. No A/Mg disorder is observed in these structures; the Mg atoms occupy octahedral sites, and the alkali cations occupy sites with an eightfold coordination. For the $AMn_4(VO_4)_3$ series, to our knowledge, no compound has been reported in the literature. Herein we report on the successful synthesis and structure of NaMn₄(VO₄)₃ which is isotypic with $AMg_4(VO_4)_3$ (A = Li, Na) [13, 14].

Experimental Section

Synthesis

The title compound was first obtained as a by-product during the crystal growth attempts of $Na_3MnV_2O_{7.5}$ in a NaCl (Merck, >99.5%)/KCl (Chempur, >99.9%) (1:1 molar ratio) salt flux. $NaMn_4(VO_4)_3$ was then prepared by a solid-state reaction from a mixture of Na_2CO_3 (Aldrich, ≥ 99.5 %), MnO (Aldrich, >99%) and V_2O_5 (Merck, 99.99%) with a 1:8:3 molar ratio. The mixture was put in a gold tube, which was placed in a silica tube and heated for a few minutes at ~ 600 °C under dynamic vacuum in order to evacuate CO_2 . Then it was sealed and fired at 500 °C for 24 h and at 650 °C for 100 h with intermediate grinding.

EDX data

Semiquantitative EDX analyses of many crystals including the one investigated on the diffractometer (Fig. 1) were carried out with a Leica 420i scanning electron microscope with albite (for Na), Mn and V as standards. The experimentally observed compositions were close to the composition obtained from the single-crystal refinement. Few crystals of compositions NaMnVO₄ and Na₃MnV₂O_{7.5} were also observed.

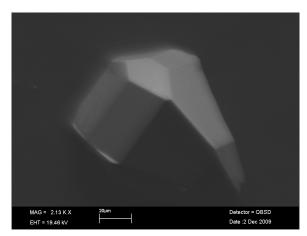


Fig. 1. SEM image of the $NaMn_4(VO_4)_3$ single crystal used for the XR data collection.

X-Ray diffraction

At each reaction stage, the polycrystalline sample was characterized by a Guinier pattern (image plate system, Fuji-film BAS-1800) with $\text{Cu}K_{\alpha 1}$ radiation and α -quartz (a = 4.9130, c = 5.4046 Å) as an internal standard. This allowed us to confirm the purity of the phase (Fig. 2). The refined powder lattice parameters are: a = 7.0212(1) Å, b = 19.8327(9) Å and V = 977.70(6) Å³.

A crystal suitable for single-crystal X-ray diffraction was selected on the basis of the size and the sharpness of the diffraction spots by Laue photographs on a Buerger camera (using white Mo radiation). The data collection was carried out on a Stoe IPDS II diffractometer using MoK_{α} radiation. Data processing and all refinements were performed with the JANA2006 program package [15]. A Gaussian-type absorption correction was applied, and the crystal shape was determined with the video microscope of the Stoe CCD diffrac-

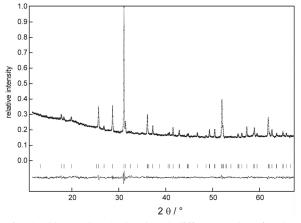


Fig. 2. Observed, calculated and difference plots for the XRPD profile refinement of the $NaMn_4(VO_4)_3$ sample.

Table 1. Crystal data and structure refinement for NaMn₄(VO₄)₃, space group $I\overline{4}2d$, Z = 4.

Refined composition	NaMn ₄ (VO ₄) ₃
Formula weight, g mol ⁻¹	587.6
Unit cell dimensions	
a, Å	7.0238(2)
c, Å	19.8360(9)
Cell volume, Å ³	978.6
Calculated density, g cm ⁻³	3.99
F(000), e	1104
Crystal size, μ m ³	$60 \times 80 \times 110$
Transm. ratio (max / min)	0.694 / 0.526
Absorption coefficient, mm ⁻¹	7.9
Detector distance, mm	80
Exposure time, min	3
ω range; increment, deg	0-180, 1.0
Integr. param. A, B, EMS	12.8; 3.3; 0.013
θ range for data collection, deg.	3.0 - 31.9
Range in hkl	$\pm 10, \pm 10, \pm 29$
Total no. reflections	17176
Independent reflections / $R_{\rm int}$	853 / 0.039
Data / ref. parameters	853 / 49
R1 / wR2 for all data	0.013 / 0.033
Extinction coefficient	2610(160)
Goodness-of-fit on F^2	0.88
Flack parameter x	0.01(2)
Largest diff. peak / hole, e Å ⁻³	0.21 / -0.21

Table 2. Coumpounds showing the same crystal structure (space group $I\bar{4}2d$, Z=4).

Compounds	a (Å)	c (Å)	V (Å ³)	Ref.
NaMn ₄ (VO ₄) ₃	7.024	19.836	978.6	this work
$NaMg_4(VO_4)_3$	6.890	19.292	915.8	[14]
NaMg ₄ (AsO ₄) ₃	6.817	19.242	894.2	[17]
LiMg ₄ (VO ₄) ₃	6.867	18.954	893.8	[13]
$\text{Co}_{1/2}\Box_{1/2}\text{Co}_4(\text{AsO}_4)_3$	6.858	18.872	887.6	[18]
$Mg_{1/2}\Box_{1/2}Mg_4(AsO_4)_3$	6.783	18.963	872.5	[19]
Fe ₅ (Fe _{0.17} Ge _{0.83}) ₂ GeO ₁₂	6.854	18.747	880.7	[20]
$Mg_{2.65}Fe_{0.49}Al_{1.95}Si_{2.91}O_{12}$	6.527	18.183	774.6	[21]
Ni _{4.35} As ₃ O _{11.7} (OH) _{0.3}	6.781	18.835	866.1	[22]

tometer. Details about the data collection are summarized in Table 1.

Structure refinement

The extinction conditions observed for NaMn₄(VO₄)₃ were compatible with space group $I\bar{4}2d$. Most of the atom positions were located using the SUPERFLIP program [16]. The use of difference-Fourier syntheses allowed us to localize the remaing oxygen atom positions. With anisotropic displacement parameters for all positions, the residual factors converged to the values listed in Table 1. A literature search readily revealed isotypism with the compounds listed in Table 2. The refined atomic positions and anisotropic displacement parameters (ADPs) are given in Tables 3 and 4.

Further details of the crystal structure investigation may be obtained from Fachinformationszentrum Karlsruhe,

Atom	Wyck. site	х	у	Z	$U_{ m eq}$
Na1	4 <i>a</i>	0	1/2	1/4	0.0145(3)
Mn1	8c	1/2	0	0.02247(2)	0.00844(8)
Mn2	8d	0.26083(5)	1/4	1/8	0.00871(7)
V1	8d	1/4	0.15257(4)	7/8	0.00536(7)
V2	4b	1/2	1/2	0	0.00563(8)
O1	16e	0.29752(15)	0.99798(17)	0.94067(5)	0.0103(2)
O2	16e	0.04816(15)	0.27322(16)	0.90028(5)	0.0107(3)
O3	16 <i>e</i>	0.44671(17)	0.29751(15)	0.04476(5)	0.0113(3)

Table 3. Atom positions and equivalent isotropic displacement parameters (Å²) for NaMn₄(VO₄)₃. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Na1	0.0152(4)	U_{11}	0.0133(6)	0	0	0
Mn1	0.00894(13)	0.00790(12)	0.00848(13)	0.00074(12)	0	0
Mn2	0.00894(12)	0.00787(12)	0.00932(14)	0	0	-0.00047(10)
V1	0.00406(12)	0.00644(14)	0.00559(11)	0	0.00012(11)	0
V2	0.00495(12)	U_{11}	0.00699(18)	0	0	0
O1	0.0104(4)	0.0113(4)	0.0090(4)	-0.0001(4)	-0.0015(3)	0.0025(4)
O2	0.0074(4)	0.0105(5)	0.0143(4)	0.0024(3)	-0.0008(3)	-0.0022(4)
O3	0.0140(5)	0.0082(4)	0.0118(4)	0.0002(3)	0.0019(3)	0.0015(3)

Table 4. Anisotropic displacement parameters (Å²) for NaMn₄-(VO₄)₃. The anisotropic displacement factor exponent takes the form: $-2\pi^2[(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}]$.

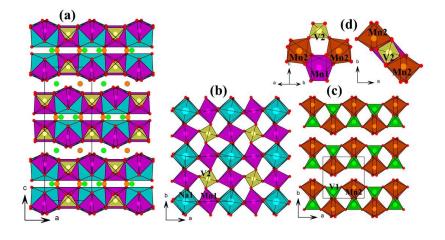


Fig. 3 (color online). (a) Projection views of the crystal structure of NaMn₄(VO₄)₃ on the (010) plane; (b) projection view of the sheets present at $z \sim 0$, 1/4, 1/2, and 3/4 on the (001) plane; (c) projection view of the sheets present at $z \sim 1/8$, 3/8, 5/8, and 7/8 on the (001) plane; (d) view of the connections between the ribbons made by Mn1 and V2.

76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-informationsdienste.de/en/DB/icsd/depot_anforderung.html) on quoting the deposition number CSD-422588.

Structure Description

The crystal structure of NaMn₄(VO₄)₃ is isotypic with that of the compounds listed in Table 2. This structure is built up of different sheets stacked perpendicular to the c axis (Fig. 3a) [18]. Identical but displaced sheets of polyhedra sit approximately at z = 0, 1/4, 1/2, and 3/4. The sheets are square nets with the repeat distance a, and with NaO₈ dodecahedra at the corners of the square net. These corners are joined in both directions by the octahedra around Mn1 which share edges with two NaO₈ dodecahedra each. At the center of the square of the

net sits a tetrahedron around V2 sharing one vertex with each of the four Mn1 octahedra surrounding it (Fig. 3b).

The sheets are separated by straight double ribbons of polyhedra at z=1/8, 3/8, 5/8, and 7/8. The V1O₄ tetrahedron and the Mn2O₆ octahedron share a common edge forming thus the basic unit of the ribbons. Each polyhedron shares an edge with the polyhedron of opposite type in the next unit leading to Mn2V1O₅ double ribbons. Adjacent ribbons share neither edges nor corners (Fig. 3c). Mn2O₆ octahedra in successive ribbons along a or b are connected with each other by sharing edges with the Mn1O₆ octahedra and corners with the V2O₄ tetrahedra (Fig. 3d). Interatomic distances and bond valence sums are in good agreement with the expected values (Table 5) [23, 24].

Table 5. Interatomic distances (Å) and bond valence sums BVS [23, 24] for $NaMn_4(VO_4)_3$. The coordination numbers are given in brackets.

	Distance	B.V.a
Na1-O1 (4×)	2.3983(10)	0.200
Na1-O2 (4×)	2.7767(11)	0.072
	$\langle 2.588 \rangle$	BVS $[4] = 0.800$
		BVS $[8] = 1.088$
Mn1-O1 (2×)	2.1576(10)	0.370
Mn1-O2 (2×)	2.2361(11)	0.299
Mn1-O3 (2×)	2.1685(11)	0.360
	$\langle 2.187 \rangle$	BVS $[6] = 2.058$
Mn2-O1 (2×)	2.2612(12)	0.280
Mn2-O2 (2×)	2.1551(11)	0.373
Mn2-O3 (2×)	2.0854(11)	0.450
	$\langle 2.167 \rangle$	BVS $[6] = 2.206$
V1-O1 (2×)	1.7284(11)	1.223
V1-O2 (2×)	1.7261(11)	1.231
	$\langle 1.727 \rangle$	BVS $[4] = 4.908$
V2-O3 (4×)	1.7180(11)	1.258
		BVS $[4] = 5.032$

^a B.V. = $e^{(r0-r)/b}$ with the following parameters: b = 0.37, $r_0(\text{Na}^{\text{I}}-\text{O}) = 1.803$, $r_0(\text{Mn}^{\text{II}}-\text{O}) = 1.790$ and $r_0(\text{V}^{\text{V}}-\text{O}) = 1.803$.

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft. H.B. Y. is indebted to the Alexander von Humboldt Foundation for a research fellowship.

- E. Gaudin, H. Ben Yahia, M. Shikano, M. Ben Amara, H.-C. zur Loye, J. Darriet, Z. Kristallogr. 2004, 219, 755.
- [2] J. K. Nimmo, Acta Crystallogr. 1981, B37, 431.
- [3] S. C. Abrahams, P. Marsh, J. Ravez, *Acta Crystallogr*. 1983, C39, 680.
- [4] L. Eddahby, A. Berrada, A. Boukhari, E. M. Holt, *Eur. J. Solid State Inorg. Chem.* **1997**, *34*, 527.
- [5] H. Müller-Buschbaum, B. Mertens, Z. Naturforsch. 1997, 52b, 663.
- [6] E. Gaudin, H. Ben Yahia, F.J. Zúñiga, J.M. Pérez-Mato, J. Darriet, Chem. Mater. 2005, 17, 2436.
- [7] Y. Le Page, G. Donnay, Can. Mineral. 1977, 15, 518.
- [8] T. I. Krasnenko, L. V. Andrianova, B. V. Slobodin, A. A. Fotiev, V. G. Dobosh, O. A. Zabara, T. P. Sirina, G. D. Milova, A. A. Ivakin, *Russ. J. Inorg. Chem.* 1987, 32, 1769.
- [9] H. Ben Yahia, E. Gaudin, J. Darriet, *Acta Crystallogr*. 2005, C61, i79.
- [10] B. Dickens, W. E. Brown, Tschermaks Mineral. Petrogr. Mitt. 1971, 16, 1.
- [11] H. Yamane, T. Nagasawa, M. Shimada, T. Endo, Acta Crystallogr. 1997, C53, 1367.
- [12] M. Ben Amara, R. Olazcuaga, G. Le Flem, M. Vlasse, *Acta Crystallogr.* **1979**, *B35*, 1567.

- [13] A. P. Tyutyunnik, V. G. Zubkov, L. L. Surat, B. Slo-bodin, *Russ. J. Inorg. Chem.* 2004, 49, 553; Zh. Neorg. Khim. 2004, 49, 610.
- [14] E. V. Murashova, Yu. A. Velikodnyi, V. K. Trunov, J. Struct. Chem. 1988, 29, 648; Zh. Strukt. Khim. 1988, 29, 182
- [15] V. Petřiček, M. Dušek, L. Palatinus, JANA2006, The Crystallographic Computing System, Institute of Physics, University of Prague, Prague (Czech Republic) 2006.
- [16] L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786.
- [17] H. Abdallah Anissa, A. Brahim, H. Amor, Acta Crystallogr. 2004, E60, i77.
- [18] R. Gopal, J. S. Rutherford, B. E. Robertson, J. Solid State Chem. 1980, 32, 29.
- [19] N. Krishnamachari, C. Calvo, Acta Crystallogr. 1973, B29, 2611.
- [20] A. Modaressi, R. Gerardin, B. Malaman, C. Gleitzer, J. Solid State Chem. 1984, 53, 22.
- [21] L. W. Finger, P. G. Conrad, Am. Mineral. 2000, 85, 1804.
- [22] J. Barbier, Acta Crystallogr. 1999, C55, IUC9900080.
- [23] I.D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244.
- [24] R. D. Shannon, Acta Crystallogr. 1976, A32, 751.